All functions

atypical_values()

Atypilac values analyses columns with character data and check if they can be different data type: if it is int vector transformed to string - "integer", vector containing 'false' and 'true' or 'yes' and 'no' with different abbreviations and capitalizations that may indicate that vector could be transform to boolean - "boolean", and if numeric values were written with coma instead of dot. Results are presented in a list with performed analyses that contain column names.

colors_discrete_torpeda() colors_diverging_torpeda()

toRpEDA color palettes for ggplot2 objects

cor_matrix()

Correlation matrix

dataset_info()

Dataset Information

decision_tree()

decision_tree`()` Builds decision tree on given data. Returns metrics for the tree and optionally plots the tree.

find_missing_values()

The aim of this function is to check how many missing values has our data.

get_descriptive_stat()

Descriptive statistics

impute_mean()

Impute mean

impute_median()

Impute median

impute_missing_data()

Impute missing data in a data frame

impute_mode()

Impute mode

outliers()

Function that finds potential outlier observations

PCA()

This function returns principal components and their associeted eigenvectors - PCA

plot_bar_plot()

Bar plots by target

plot_bar_qual()

This function returns bar plots of quality columns of a dataframe

plot_hist_vars()

plot_hist_vars

plot_num_plots()

Draws numeric plots (boxplots and violin plots) by target for selected columns.

plot_scatter()

Plot scatter plots for continuous variables

redundant_cols()

redundant_cols`()` suggests redundant columns and deletes them if requested.

report_data_info()

Generate report_data_info

table_one()

table_one

theme_torpeda()

toRpEDA theme for ggplot2 objects